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ABSTRACT

A syn-selective catalytic asymmetric 1,4-addition of r-ketoanilides to nitroalkenes is described. The homodinuclear Ni2-Schiff base 1b complex
was suitable for the reaction, and products were obtained in 61-92% yield, 8.3:1 f 20:1 syn-selectivity, and 72-98% ee. Stereoselective
transformation of the 1,4-adduct to a trisubstituted pyrrolidine was also performed.

Catalytic asymmetric Michael reactions to nitroalkenes
provide versatile building blocks. Various chiral catalysts
have been developed for these reactions using aldehydes,
ketones, and 1,3-dicarbonyl compounds as nucleophiles.1 In
biosynthesis, pyruvic acid, a representative 1,2-dicarbonyl
compound, is utilized as a key C2 and C3 donor unit. The
use of related 1,2-dicarbonyl compounds such as R-ketoesters
and R-ketoanilides as nucleophiles in catalytic asymmetric
synthesis, however, is rather limited2-4 due to their high
reactivity as electrophiles. Chemoselective activation of 1,2-

dicarbonyl compounds as nucleophiles is required to avoid
undesired self-condensation reactions of 1,2-dicarbonyl
compounds. Jørgensen2 and our group3 independently re-
ported direct catalytic asymmetric Mannich-type reactions
using R-ketoesters and/or R-ketoanilides as donors, but
applications of 1,2-dicarbonyl compounds as donors in
asymmetric Michael reactions remained unsolved until a very
recent report by Sodeoka and co-workers.4 In their first
successful report, a mono-Ni chiral diamine complex pro-
moted anti-selective catalytic asymmetric 1,4-addition of
R-ketoesters to nitroalkenes, giving products in excellent anti-
selectivity and enantioselectivity. The results prompted us† The University of Tokyo.

‡ Institute of Microbial Chemistry.
(1) Reviews on asymmetric 1,4-addition to nitroalkenes: (a) Berner,

O. M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 1877.
Organocatalysis: (b) Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701. Metal
catalysis: (c) Christoffers, J.; Koripelly, G.; Rosiak, A.; Rössle, M. Synthesis
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to report our preliminary efforts on this issue. Under
dinuclear nickel-Schiff base 1 (Figure 1) catalysis,5-7

complementary syn-selectivity was accomplished, and prod-
ucts were obtained in up to 92% yield, >20:1 syn-selectivity,
and 98% ee.

Because dinuclear Ni2-Schiff base 1a and 1b catalysts (Figure
1) gave high selectivity in the asymmetric Mannich-type
reaction of R-ketoanilides,3b we performed optimization studies
on the reaction of nitroalkene 2a and R-ketoanilide 3a using
dinuclear Schiff base 1 complexes (Table 1).5 The Ni2-1a
complex syn-selectively promoted the reaction, and product 4aa
was obtained in 20% yield and 34% ee (entry 1). A Co2(OAc)2-
1a complex (M ) CoIIIOAc),8a which was developed for
asymmetric Michael reaction of 1,3-dicarbonyl compounds to
nitroalkenes, gave better enantioselectivity than the Ni2-1a, but
the yield was poor (entry 2, 4% yield, 73% ee). The Ni2-1b
complex derived from biphenyldiamine gave product 4aa in
good syn-selectivity (14:1) and 77% ee, but only 9% yield after
48 h at 0 °C (entry 3). Reactivity was slightly improved at rt,
while maintaining similar enantioselectivity (entry 4, 21% yield,

76% ee). With the Schiff base 1b, other metals, Co and Mn,8b

were also investigated (entries 5 and 6), but only trace, if any,
product was obtained. Among the solvents screened, 1,4-
dioxane produced the best enantioselectivity (entry 8, 90% ee).
Achiral additives to improve the reactivity were investigated, and
the addition of MS 5 Å (entry 9) and 1,1,1,3,3,3-hexafluoroiso-
propanol (HFIP, entry 10) was effective,9 giving 4aa in 71%
isolated yield, 14:1 syn-selectivity, and 90% ee (entry 10).

The substrate scope and limitations of the reaction are
summarized in Table 2. The Ni2-1b catalyst was applicable
to a broad range of nitroalkenes. Various nitrostyrene
derivatives 2b-2g with either an electron-withdrawing or
electron-donating substituent on the aromatic ring gave
products with good to excellent syn-selectivity and enanti-
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Shepherd, N. E.; Tanabe, H.; Xu, Y.; Matsunaga, S.; Shibasaki, M. J. Am.
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Handa, S.; Gnanadesikan, V.; Matsunaga, S.; Shibasaki, M. J. Am. Chem.
Soc. 2010, 132, 4925. Pd-La cat.: (c) Handa, S.; Nagawa, K.; Sohtome, Y.;
Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2008, 47, 3230. Ga-
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M. J. Am. Chem. Soc. 2009, 131, 8384.

(7) For selected examples of related bifunctional bimetallic Schiff base
catalysis in asymmetric synthesis, see: (a) Annamalai, V.; DiMauro, E. F.;
Carroll, P. J.; Kozlowski, M. C. J. Org. Chem. 2003, 68, 1973. (b) Yang,
M.; Zhu, C.; Yuan, F.; Huang, Y.; Pan, Y. Org. Lett. 2005, 7, 1927. (c)
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(8) Co2-1a: (a) Chen, Z.; Furutachi, M.; Kato, Y.; Matsunaga, S.;
Shibasaki, M. Angew. Chem., Int. Ed. 2009, 48, 2218. Mn2-1a: (b) Kato,
Y.; Furutachi, M.; Chen, Z.; Mitsunuma, H.; Matsunaga, S.; Shibasaki, M.
J. Am. Chem. Soc. 2009, 131, 9168.
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Soc. 2002, 124, 9030. (e) Takita, R.; Ohshima, T.; Shibasaki, M. Tetrahe-
dron Lett. 2002, 43, 4661.

Figure 1. Structures of dinucleating Schiff bases 1a-H4 and 1b-H4

and homodinculear Ni2-1a and -1b complexes.

Table 1. Optimization Studies

entry M 1 solvent additive
%

yielda

dra

(syn/anti)
%

eeb

1c Ni 1a THF none 20 6.8:1 34
2c Co(OAc) 1a THF none 4 3.0:1 73
3c Ni 1b THF none 9 14:1 77
4 Ni 1b THF none 21 8.2:1 76
5 Co(OAc) 1b THF none trace ND ND
6 Mn(OAc) 1b THF none trace ND ND
7 Ni 1b EtOH none 33 3.0:1 52
8 Ni 1b 1,4-dioxane none 18 6.2:1 90
9 Ni 1b 1,4-dioxane MS 5 Å 50 5.6:1 87

10 Ni 1b 1,4-dioxane MS 5
Å/HFIPd

71e 14:1 90

a Determined by crude 1H NMR analysis. b Determined by chiral HPLC
analysis. c Reactions were run at 0 °C in entries 1-3. d 5 equiv of HFIP
was added. e Isolated yield after purification by silica gel column
chromatography.
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oselectivity (entries 2-9, 8.3:1f 20:1, 82-98% ee). Good
syn-selectivity and enantioselectivity were maintained even
with reduced catalyst loading (entry 6: 5 mol %, entry 7:
2.5 mol %), although longer reaction time was required and
yield of 4ea decreased. The absolute and relative configu-
ration of 4ea was determined by X-ray crystallographic
analysis (Figure 2).10 2-Thienyl-substituted nitroalkene 2h

also had good syn-selectivity, but its enantioselectivity was
somewhat decreased (entry 10, 72% ee). Nitrodiene 2i

predominantly afforded the 1,4-adduct 4ia in high syn-
selectivity and enantioselectivity (entry 11, >20:1 and 90%
ee). �-Alkyl-substituted nitroalkene 2j was also applicable,
and the product was obtained in 10:1 syn-selectivity and 92%
ee (entry 12). Ni2-1b was applicable to other R-ketoanilides
3b and 3c, giving products in >20:1 syn-selectivity and
92-83% ee (entries 13 and 14). To demonstrate the synthetic
utility of the reaction, transformation of the product to a
trisubstituted pyrrolidine was performed (Scheme 1). Reduc-
tion of 4ea with Raney-Ni in EtOH directly gave the cyclized
adduct 5ea in 71% yield.11,12

In the present reaction, we assume that the two Ni centers
function cooperatively as observed in other related reactions
using Ni2-Schiff base 1a and 1b complexes.5 The postulated
reaction mechanism is summarized in Figure 3. One of the
Ni-O bonds in the outer O2O2 cavity is speculated to work
as a Brønsted base to generate Ni-enolate in situ.13 The other
Ni in the inner N2O2 cavity functions as a Lewis acid to
control the position of the nitroalkene, similar to conventional
metal-salen Lewis acid catalysis. The C-C bond formation

(10) Flack parameter was -0.14. CIF file is available as Supporting
Information.

Figure 3. Postulated catalytic cycle of Ni2-1b-catalyzed asymmetric
1,4-addition.

Table 2. syn-Selective Catalytic Asymmetric 1,4-Addition of
R-Ketoanilides to Nitroalkenesa

entry R 2

cat.
(mol
%) 3

%
yieldb 4

drc

(syn/anti) % eed

1 Ph 2a 10 3a 71 4aa 14:1 90
2 4-Cl-C6H4 2b 10 3a 87 4ba 19:1 86 (96)e

3 4-Br-C6H4 2c 10 3a 86 4ca 8.4:1 86
4 3-Br-C6H4 2d 10 3a 77 4da 8.3:1 82
5 4-MeO-C6H4 2e 10 3a 92 4ea >20:1 98
6f 4-MeO-C6H4 2e 5 3a 83 4ea >20:1 97
7f 4-MeO-C6H4 2e 2.5 3a 68 4ea >20:1 97
8 3-MeO-C6H4 2f 10 3a 63 4fa 10:1 85
9 4-Me-C6H4 2g 10 3a 83 4ga 11:1 89

10 2-thienyl 2h 10 3a 82 4ha 11:1 72
11 (E)-PhCHdCH 2i 10 3a 70 4ia >20:1 90
12 PhCH2CH2 2j 10 3a 60 4ja 10:1 92
13 4-MeO-C6H4 2e 10 3b 74 4eb >20:1 92
14 4-MeO-C6H4 2e 10 3c 61 4ec >20:1 83

a Reaction was run using 1.5 equiv of 3, 5 equiv of HFIP (1,1,1,3,3,3-
hexafluoroisopropanol), and MS 5 Å (20 mg for 0.2 mmol of 2) in anhydrous
1,4-dioxane (1.0 M) at room temperature. b Isolated yield after purification
by silica gel column chromatography. c Determined by crude 1H NMR
analysis. d Determined by chiral HPLC analysis. e Number in parentheses
is the value after enantioenrichment by recrystallization from hexane/ethyl
acetate (entry 2, 81% yield). f Reaction was run for 72 h at rt.

Figure 2. ORTEP plot of product 4ea.

Scheme 1. Transformations of Michael Adduct 4ea
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via the transition state (TS in Figure 3), followed by
protonation, affords the syn-adduct and regenerates the Ni2-
1b catalyst.

In summary, we succeeded in a catalytic asymmetric 1,4-
addition of R-ketoanilides to nitroalkenes under dinuclear
nickel catalysis. The homodinuclear Ni2-Schiff base 1b

complex promoted the reaction at rt, and products were
obtained in 60-92% yield, 8.3:1f 20:1 syn-selectivity, and
72-98% ee. The observed syn-selectivity was complemen-
tary to that previously reported for an anti-selective reaction
under mono-Ni-diamine catalysis by Sodeoka and co-
workers. Further studies to improve the reactivity of dinuclear
nickel catalysis are ongoing.
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(11) Minor diastereomer was not detected under the reaction condi-
tions.

(12) For transformations of anilide moiety into carboxylic acid, ester,
amide, and alcohol under mild reaction conditions, see: (a) Evans, D. A.;
Aye, Y.; Wu, J. Org. Lett. 2006, 8, 2071. (b) Saito, S.; Kobayashi, S. J. Am.
Chem. Soc. 2006, 128, 8704. (c) Chen, Z.; Morimoto, H.; Matsunaga, S.;
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(13) 1H NMR analysis of the bimetallic Ni2-1a and Ni2-1b complexes
does not show any peaks, suggesting that at least one of the Ni metal centers
has non-planar coordination mode. On the basis of the molecular model,
we assume that the outer Ni center has cis-� configuration due to strain of
the bimetallic complexes. In other words, one of the Ni-O bonds of the
outer Ni center is speculated to be in apical position. Thus, the Ni-O bond
would work as a Brønsted base to deprotonate R-ketoanilide to give the
Ni-enolate intermediate. Of course, the proposed mechanism in Figure 3 is
too much speculative at the moment, and mechanistic studies, including
trials to elucidate precise coordination modes of two Ni metal centers by
X-ray single crystal analysis, are ongoing. For the utility of cis-� metal
complexes of salens in asymmetric catalysis, see a review: Katsuki, T. Chem.
Soc. ReV. 2004, 33, 437.
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